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Analytic continuation and Green function calculations 
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Ridge, Tennessee 37830, USA 
?t Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA 

Received 28 June 1985 

Abstract. Hass, Velicky and Ehrenreich have shown that Green function values can be 
obtained appreciably faster by performing the calculation at complex energies with large 
imaginary parts, and then returning to real energies by an analytic continuation algorithm. 
However, analytic continuation is numerically unstable and thus an error analysis is essential 
if one is to have confidence in the results of the continuation. In this paper, error estimates 
are obtained for the power series method of Hass et 01 and for a method based upon 
Cauchy’s theorem introduced herein. These estimates can be used to select appropriate 
values for the parameters of the continuation algorithms. 

1. Introduction 

Many properties of solids can be easily expressed and calculated in terms of Green 
functions, and in particular, the limiting behaviour of G ( E )  = ( E  - H ) - ’  on the real 
axis. Since this function is singular on a portion of the real axis, the traditional 
numerical method is to add a small imaginary part to E, thereby performing the 
calculation just off the axis. In a recent paper, Hass er aZ(1984) proposed an interesting 
alternative, one designed to increase the speed of Green function evaluations. The 
scheme put forth is to solve for G (  z) for z away from the axis, and then use an analytic 
continuation algorithm (based upon power series) to return to the real line. The 
rationale for this procedure is that G(z)  is given in terms of a q-space integral, q a 
Fourier transform variable. The singularities on the axis cause the integrand G(4, z )  
to be a rather badly behaved function when Im(z) is small, and consequently obtaining 
the required accuracy for the integral necessitates a time-consuming evaluation of 
G(q, z )  for a great many values of q. However, off the axis G(q, z )  is much smoother, 
and thus G(z )  may be calculated much more easily. Using this method, Hass et a1 
report being able to do a three-dimensional CPA calculation within an accuracy of 2% 
in one-third the time of the standard approach. 

The purposes of the present paper are to describe another possible algorithm for 
the analytic continuation, one based upon Cauchy’s theorem, and to present an error 
analysis of both methods. For the analytic continuation methods to be effective, an 
error analysis is essential because of the ‘ill conditioned’ nature of the problem; by 
this it is meant that a small change in the initial data can produce a large disturbance 
in the final answer (Miller 1970, Hass 1984). Consequently, the error, starting with 
inaccuracies in the initial data and compounded with the subsequent numerical round- 
off, will grow during the calculation and eventually, if the parameters are not chosen 
wisely, overpower the desired solution. As a result, if G(z)  is computed initially too 
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far off the real line, the analytic continuation back to the axis will yield nonsense. An 
error analysis is therefore required in order to determine appropriate values for the 
parameters (the starting values of Im( z )  and the discretisation variable A)  and to have 
confidence in the results obtained by using an analytic continuation approach. The 
results of the analysis show that the Cauchy method is more stable but less accurate 
than the power series method. Another benefit of the error analysis is that it makes 
it possible to incorporate extrapolation in the algorithm, thereby improving upon the 
accuracy of the methods with little additional effort. This will be discussed in § 4. 
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2. The Cauchy method 

- N  

Let f (z )  be a function which is analytic in the upper half plane, and assume that f (z )  
is known at the points 

En,M = Eo+nA+iMA (2.1) 
where - N s n s N, N and M integers, and A a fixed constant. Thus, the function 
values are given at points which are equally spaced on a line in the upper half plane 
parallel to the real axis. The analytic continuation procedure will calculate f (z )  on 
the line Im(z) = ( M  - l ) A ,  at the points z,,+~, - N +  1 S n S N - 1; repeating the 
process M times yields the values off on the real axis, at the points z , ,~ ,  - N + M s n s 
N - M. (The assumptions of equal spacing and an odd number of initial values are 
solely for notational convenience, and are not essential.) In Hass er al, the continuation 
method is based upon Taylor's theorem, the unknown values being computed by fitting 
a truncated power series through the known points. The method described in this 
section relies on Cauchy's theorem, which states that 

fC g(z) dz = 0 (2.2) 

provided g(z)  is analytic inside the closed contour C. 
The continuation algorithm is generated by choosing C to be the triangular path 

determined by three adjacent points on the line Im(z) = MA together with the point 
just below the midpoint on the line Im(z) = ( M  - 1)A (see figure 1). The integral over 

- N * M *  

0 0 0 0 0 0 0  

A 1  1 I 1  I -  
N - 1  N 

- N + 1  - N + M  N - M - 1  
n 

Figure 1. Schematic illustration of the Cauchy (triangle) and power series (cross) analytic 
continuation methods for M = 5.  (The generation of the Im(r)= (M- 1)A line of values 
for the power series method is not shown.) 0, given initial values of the function; x,  
intermediate points where the function values are calculated; A ,  energies where the function 
is ultimately determined. 
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each of the four line segments which make up this path is approximated by the average 
of the function values at the endpoints times the difference of the two endpoints. 
Setting the integral over this triangle equal to zero yields the equation 

f( ZZ,M - 1 )  = f( Z",M ) + ti[f( zn - 1 .M 1 -f( zn+ 1 ,M )I (2.3) 

for the unknown value o f j  Having calculated the function values on the line Im(z) = 
( M  - l ) A ,  the process can now be repeated; at each step of the computation, the two 
endpoints are lost, and thus the initial 2N + 1 values only generate 2( N - M )  + 1 values 
on the axis. 

This is the simplest algorithm that can be constructed using the Cauchy theorem. 
By choosing longer paths (e.g. taking five points on the line Im(z) = mA to generate 
a function value on the line Im(z) = ( m  - l )A) ,  one can generate more accurate methods. 
In addition, one can use a more sophisticated integration scheme than the admittedly 
crude approach used to obtain (2.3). However, there is a trade-off between accuracy 
and stability, the more accurate being the more unstable (and more accurate methods 
may require additional initial data to generate the same number of values on the axis). 
The Cauchy method was deliberately designed to sacrifice accuracy for stability. 

Clearly, both continuation procedures, power series and Cauchy, are trivial to 
implement and require little computation. Two minor advantages of the Cauchy 
approach are that it is much easier to implement if the initial data are not equally 
spaced, and that it does not require an initial step (the power series method generates 
the M - 1 line of function values using a procedure different from the remainder of 
the algorithm). The principal disadvantage is that it is less accurate than the power 
series method. Consider for example the function 

h(z) =2[z-(zz-  1)"2]+(z+0.1+0.05i)-'+(z-0.1 +O.O5i)-' (2.4) 

discussed in Hass er al. These authors calculate h(  z) on the line Im( z) = 0.1, and then 
use the power series method (with M = 5 and A = 0.02) to obtain h(z) on the axis, 
with excellent results. In figure 2 the results of the two methods are compared, and 

R e  z 

Figure 2. A comparison of the Cauchy (broken curve), power series (full curve), and exact 
results (dotted curve) for the function h ( r ) ,  with M = 5 and A = 0.02. 
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clearly the power series is superior. If, however, the initial values are moved further 
from the real axis, then the results deteriorate until there is no resemblance between 
the computed and actual values. This is demonstrated in figure 3 (power series) and 
figure 4 (Cauchy). In these figures, the initial data have been moved away from the 
real axis, increasing the number of steps M needed to reach the axis. Note that the 
power series calculation disintegrates much sooner than the Cauchy. In the remainder 
of the paper, an error analysis is performed to explain this behaviour, and to provide 
guidelines for choosing M and A so as to obtain meaningful results. 

3. Error analysis 

One source of error in any numerical continuation procedure is the discretisation of 
the function and the enforcement of analyticity in only an approximate manner. In 
the power series method, the power series representing the function is truncated, 
whereas the Cauchy method only computes an approximation to the contour integral 
over the triangle. For both of these methods, however, the magnitude of this error is 
relatively easy to compute as a function of A; this is accomplished in theorems 1 and 
2. On the other hand, the numerical round off error is much harder to analyse, and 
the results below only present a crude upper bound. Nevertheless, these estimates can 
be effectively used to determine values for M and A which will lead to reasonable results. 

The first result describes the discretisation error for the Cauchy method. 
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Figure 4. The breakdown of the Cauchy method for the function h ( z ) ,  with A = 0.02 and 
( a )  M = 5 ,  ( b )  M = 40, ( c )  M = 56 and ( d )  M = 57. The broken curve is the exact result. 

Theorem 1. Let g(z) be analytic in the upper half plane, and assume g(z)  is known 
for z , , ~  = Eo+ nA+iMA, where - N  S n s N, M and n are integers, O <  M < N, and 
A is a positive constant. If $(z,,~-,,,), 1 s m C M, denotes the result of the Cauchy 
continuation, then for - N + m s n s N - m 

2 ( zn ,  M - m = g ( zn, M - m ) + t A2g"( zn, M - m+ 1 + o( A2) * (3.1) 

ProoJ: Consider the four points zo, zo* A, zo - iA, as shown in figure 1. Define f ; ( z )  = 
(z  - zo)', and apply (2.3) to f; to obtain for 13 1, 

j (zo- iA) = -;i[A'--(-A)']. (3.2) 

Thus, the error El arising from the continuation is 
4 

El =f;(zo-iA)-f;(zo-iA) 

= (-iA)'+$[A'- ( -A)']  

Since g is analytic, there is a convergent power series representation, g(z)  = 
E;"=, a r ( z  - zo)', with radius of convergence greater or equal to Im(zo). Using the 
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linearity of the continuation and (3.3),  one finds 
W W W 

g^(zo-iA)= 2 al j (zo- iA)= c aLf;(z,-iA)- alEl 
I = O  I = O  I=O 

= g(zo - iA) + a2A2 + o(A2) 

= g( zo - iA) + fA2g”( zo) + o( A’). (3.4) 
Since g” is itself analytic, (3.4) can be applied to itself to obtain g^(zo-2iA): 

$( zo - 2iA) = g( zo - 2iA) + fA2g”( zo - ih) + o(A2) 
+$A’[ g”( zo - iA) + fA2g‘4’( zo) + o(A2)] + o(A’) 

= g(zo-2iA)+A2g”(zo-ih)+o(A2). (3.5) 
A simple induction argument now yields (3.1). 

The leading term in the discretisation error is thus of order A’, and should be 
largest where the second derivative is large. In figures 5 and 6 the imaginary part of 
the calculated error, g  ̂- g, and the leading order term, ~MA*g’‘(z,,,), are plotted against 
the number of steps M to the real axis (for A=O.O2) and the step size A (for M =  5 ) ;  

25.0 1 

20.0 - 

0 5 .0  10.0 15.0 20.0 25.0 
M 

Figure 5. The imaginary part of the error p - g (full curve) and the imaginary part of the 
leading error term (broken curve) on the real axis as a function M, with A = 0.02. This is 
for the Cauchy method acting on the function h ( z )  at the point z = -0.09. 

1 , 
0 0.04 0.08 0.12 

b 

Figure 6. The imaginary part of the error ĝ  - g (full curve) and the imaginary part of the 
leading error term (broken curve) on the real axis as a function of A, with M = 5. This is 
for the Cauchy method acting on the function h ( z )  at the point z = -0.09. 
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this is for the function h(z) at z = -0.09. This point is one of the peaks of h(z), and 
thus a place where the error is likely to be largest. In both cases, the A* term gives a 
reasonably good estimate of the actual error, especially as one should expect, for the 
smaller values of M and A likely to be used in practice. These error estimates can 
therefore be used to determine appropriate values for M and A. Note that when A is 
varied, the point at which the second derivative is evaluated also changes, which 
explains the downturn of the curve in figure 6 .  

In the power series method, the procedure for generating the second line, i.e. the 
function values at z , , ~ - ~ ,  is different from the basic algorithm employed to compute 
the remaining M - 1  lines. However, for the purposes of the error analysis, it is 
convenient to ignore this minor technicality and assume that the function values 
f ( ~ , , ~ - ~ )  are also known exactly. 

Theorem 2. Let g(z)  be analytic in the upper half plane, and assume that g(z)  is 
known for z , , ~  and z , , ~ - ~ ,  where z,,,, = Eo+nA+imA, - N s  n S  N, A a positive 
constant. If g(zn,+,,), 1 C m g M denotes the result of the power series continuation 
algorithm, then for - N + m s n s N - m 

g'( Zn,M-m) = g( Zn ,M-m)  - dm A4g(4)(~n,~--m+ 1) + 0(A4)*  

Proof: As in theorem 1, the effect of the continuation procedure on the functions 
fi( z) = (z  - zo)' will first be examined. Using the points zo, zo f A, zo + i A  as shown in 
figure 1, the method of Hass et a1 sets 

(3.6) 
for any analytic function f :  Note that this equation simply expresses the fact that the 
value of an analytic function at the centre of a circle is the average of its values along 
the circle. 

f (  zo - i A ) = 4f( zo) - f( zo + i A ) -f( zo - A )  -f( zo + A)  

For f ( z )  =fr(z) = (z  - z0)I, the error El is found to be 
l = O  mod 4 l > O  
otherwise. 

El = fi( zo - i A) -fi( zo - iA) = (3.7) 

I Thus, for g(  z) = Z.;"=, a/(  z - zo) , 
m 

g'( zo - iA) = g(  zo - iA) - aIEl 
1=4 

= g(zo-iA) -bg(4)(~O)A4+o(A4). (3.8) 

(3.9) 

The same reasoning employed in theorem 1 now yields 
g"(zo- miA) = g(zo- miA) -dmA4g(4)[zo-(m - l)iA)]+o(A4) 

and this completes the proof. 

It is easy to check that the initial procedure used to generate the function values 
at z , , ~ - ~  (see Hass et a1 1984) is also a fourth-order accurate process; thus, the leading 
error term for the power series method is of order A4. The function h ( z )  at the point 
z = -0.09 will again be used to test this result. In figures 7 and 8, the calculated error, 
g - g, and the error predicted by the leading term in (3.9) are plotted against M (for 
A = 0.02) and A (for M = 5 ) .  It is seen that, as with the Cauchy method, the predictions 
serve as adequate estimates of the error. 

Theorems 1 and 2 indicate that the power series method is more accurate than the 
Cauchy method; this is not surprising, since the latter only uses three values to generate 
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Figure 7. The imaginary part of the error g - i (full curve) and the imaginary part of the 
leading error term (broken curve) on the real axis as a function of M, with A = 0.02. This 
is for the power series method acting on the fucntion h ( z )  at the point z = -0.09. 
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Figure 8. The imaginary part of the error g - i (full curve) and the imaginary part of the 
leading error term (broken curve) on the real axis as a function of A, with M = 5 .  This is 
for the power series method acting on the function h ( z )  at the point z = -0.09 

a new point, whereas the former uses four. However, this cannot be the complete 
picture of the error in the computation. Even though this leading term increases with 
M, the above error analysis does not explain the rapid breakdown of the calculations 
as M increases, or the greater 'stability' of the Cauchy method. The above theorems 
have assumed an exact computation, ignoring numerical errors, whereas the ill posed 
nature of the problem indicates that numerical error will grow during the computation. 
As the power series method more accurately represents the continuation process, it 
will naturally be more susceptible to the inherent numerical instabilities. A very crude, 
but nevertheless useful, analysis of the numerical errors will now be performed. 

For the Cauchy method, represent the given data, g ( . z n , M ) ,  as a vector in C Z N f l  

+ E ,  (3.10) 
g ( z N , M )  

where Eo€  C Z N + *  represents the error vector. In the example discussed above, the 
function h ( z ) ,  this error vector is a consequence of numerical errors in calculating the 
function values at the points z , , ~  caused by the finite computer precision, and is 
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consequently very small. However, for practical applications, the initial data (the 
Green function values) are themselves calculated only in an approximate fashion, and 
thus Eo will be significantly larger. A convenient measure for the size of E is the co-norm 

(3.11) \ I  E )I m = I )  (e,> 1) m = maxi ejl. 

Denote by g,,, + E,, 1 s m s M,  the result of applying the Cauchy continuation to 
g ( z )  m times. From (2.3), it is obvious that 

II E m  II m 6 2 II Em-, /la (3.12) 

and thus 

I1 E m  II m s 2" ll Eo I/ m . (3.13) 

A similar analysis for the power series method yields 

II E m  IIm 6 7" I1 Eolla. (3.14) 

Although (3.13) and (3.14) are rather crude estimates, they do give an indication of 
the quick deterioration of both methods as the initial data are moved further from the 
real axis. These estimates, together with theorem 1 or 2, can be used to obtain effective 
values for M and A. 

As a demonstration of the predictive capabilities of (3.13) and (3.14), the breakdown 
of both methods will be examined, with the function h(z) again used as a test case. 
T h e  following analysis is rather imprecise, but nevertheless illustrates the usefulness 
of these estimates. Since the initial values of h(z )  off the axis are computed directly 
from the definition (equation (2.4)), the initial error norm is of order Since 7" 
is of the order 1.6 x the above analysis predicts that the numerical error will 
dominate the power series continuation for M 3 18. Since (3.14) is an upper bound 
this is of course a conservative estimate; calculations indicate that for this example 
the power series method becomes unreliable at M = 22. Similarly, for the Cauchy 
method, (3.13) predicts breakdown at M about 52, while the calculations fall apart 
for M approximately 56. 

For practical problems, M = 17 and M = 51 are unrealistically large, as the error 
in the initial data is much larger than To simulate this situation, a sequence of 
random numbers E, were generated from the interval lo4]; the initial values 
h(z , , )  were then replaced by ( l + ~ , ) h ( z , , , ) .  For the power series method (resp 
Cauchy method), .the error analysis now estimates numerical instability setting in at 
about M = 4  (resp M = 1 1 )  and the calculations show M = 6  (resp M = 15) .  Thus, 
the above estimates work reasonably well in setting an upper bound on the value of M. 

4. Extrapolation 

In addition to assisting in the choice of parameter values, the error estimates of the 
previous section can also be used as the basis of extrapolation procedures. Thus, with 
only a small amount of additional computation, one can improve upon the accuracy 
of the continuation methods. We will illustrate this idea for the Cauchy method, the 
analogous steps for the power series method being obvious. 
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If, in addition to computing i (  z,,~), - N + M S n S N - M using the discretisation 
A, one also uses every other initial point to define two discretisations of size 2A, then, 
with obvious notation, theorem 1 implies 

(4.1) 

The algorithm must be done twice with step size 2A in order to generate an approxima- 
tion to g (  z,,~), - N + M + 1 s n s N - M - 1. Thus, eliminating the second-order term 
in A from (4.1), and defining 

gee(zn,O) 2 i A ( z n , 0 )  -82A(Zj,0)  (4.2) 

S e ( Z n , o )  - g(z.0)  = O ( A * ) .  (4.3) 

one has 

The extrapolated value is therefore a better estimate of g(z) .  Figure 9 shows a 
comparison of the Cauchy method with the extrapolated Cauchy for the function h ( z ) ,  
with M = 6 and A = 0.02. As the error analysis would indicate, there is a significant 
improvement, but it is still not as accurate as the power series method. 

- 2 . 0  -1.0 0 1.0 2.0 
R e  z 

Figure 9. A comparison of the Cauchy (broken curve), extrapolated Cauchy (full curve) 
and the exact (dotted curve) results for h ( z )  with M = 6 and A = 0.02. 

5. Conclusion 

Hass er a1 have demonstrated that analytic continuation can be effectively used to 
speed up Green function calculations. An alternative algorithm for the continuation 
has been described herein, and the errors arising from both methods have been 
examined. Although using this approach for calculating Green functions will always 
entail a loss of accuracy, these error estimates can be used to determine values for M 
and A for which the error is sufficiently small. Analytic continuation can be especially 
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useful in locating model parameters to fit experimental data; in this situation, a great 
many calculations must be done, and until one gets close to a good set of values, a 
few per cent in accuracy is not important. 

The analysis has shown that the power series method is more accurate, and 
consequently more susceptible to numerical instability. If one knows what the errors 
are in the initial data, then the power series method should be used. However, if these 
errors are unknown, then it would be safer to use the Cauchy method with extrapolation. 
(Because of the higher accuracy of the power series algorithm, extrapolation is not 
likely to change the final result significantly, and is therefore not worth the effort.) 
Using the results developed in this paper, it is possible to choose the method and the 
parameters that are best suited to a particular calculation. 

Analytic continuation 

Acknowledgments 

We would like to thank K Hass for sending us a copy of his thesis. This research was 
sponsored by the Applied Mathematical Sciences subprogram and the Division of 
Materials Sciences, US Department of Energy under contract DE-AC05-840R21400 
with Martin Marietta Energy Systems, Inc. 

References 

Hass K C 1984 Thesis Harvard University 
Hass K C, Velicky B and Ehrenreich H 1984 Phys. Rev. B 29 3697 
Miller K 1970 SIAM J. Math. Anal. 1 5 2  


